

Kuldeep Singh

Assistant Professor (Commerce)

PCJ School of Management

Maharaja Agrasen University, Baddi-Himachal Pradesh

Capital Structure

Capital Structure Coverage –

- Concept of Capital Structure
- Capital Structure planning
- Sources of Financing Capital
- Factors affecting Capital structure
- Concept of Value of a Firm

- Significance of Overall Cost of Capital (WACC)
- Capital Structure theories
 - Net Income
 - Net Operating Income
 - Modigliani-Miller
 - Traditional Approach

Concept of Capital Structure

- Capital Structure is one of the basic financial decisions directed towards the achievement of maximization of shareholders' wealth.
- It refers to the make up of the capitalization long term capital of the firm.
- It is the proportion existing between various sources of long term capital such as equity capital, preference capital and debenture raised by firm.
- Capital structure can be defined as the mix of owned capital (equity, reserves & surplus) and borrowed capital (debentures, loans from banks or financial institutions)

Concept of Capital Structure

- Maximization of shareholders' wealth is prime objective of a financial manager. The same may be achieved if an optimal capital structure is designed for the company.
- It involves balancing the shareholders' expectations (risk & returns) and capital requirements of the firm.

Planning the Capital Structure Important Considerations –

- Return: Means ability to generate maximum returns to the shareholders, i.e. maximize EPS and market price per share.
- Cost: minimizes the cost of capital (WACC). Debt is cheaper than equity due to tax shield on interest & no benefit on dividends.
- Risk: insolvency risk associated with high debt component.
- <u>Flexible:</u> altering capital structure without much costs & delays, to raise funds whenever required.
- Capacity: ability to generate profits to pay interest and principal.

Sources of Financing Capital

Long-Term Sources:

- Equity Shares
- Preference shares
- Debentures
- Long term loans

Short term sources:

- Short term loans
- Bank Overdrafts

Concept of Value of a Firm

- ➤ Value of a firm depends upon (EBIT) earnings of a firm and its cost of capital (Ko) (i.e. WACC).
- Earnings are a function of investment decisions, and operating efficiencies, & WACC is a function of its capital structure.
- Thus, value of a firm varies due to changes in the earnings of a company or its cost of capital, or both.
- ➤ Capital structure cannot affect the total earnings of a firm (EBIT), but it can affect the shareholders' earnings.

Patterns of capital structure

- Equity Shares only
- Equity Shares and Preference Shares
- Equity Shares and Debentures
- Equity, Preference Shares and Debentures etc.

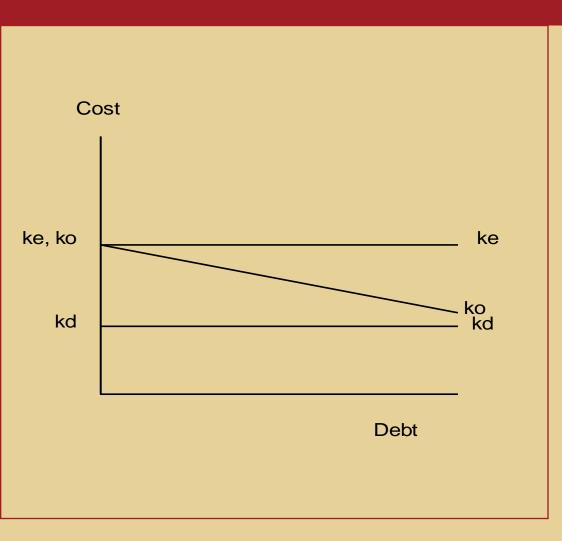
Capital Structure Theories

ASSUMPTIONS -

- Firms use only two sources of funds –
 equity & debt.
- No change in investment decisions of the firm, i.e. no change in total assets.
- ❖ 100 % dividend payout ratio, i.e. no retained earnings.
- Business risk of firm is not affected by the financing mix.
- * No corporate or personal taxation.
- Investors expect future profitability of the firm.

Capital Structure Theories — A) Net Income Approach (NI)

- Net Income approach proposes that there is a definite relationship between capital structure and value of the firm.
- The capital structure of a firm influences its cost of capital (WACC), and thus directly affects the value of the firm.
- NI approach assumptions
 - NI approach assumes that a continuous increase in debt does not affect the risk perception of investors.
 - o Cost of debt (K_d) is less than cost of equity (K_e) [i.e. $K_d < K_e$]
 - o Corporate income taxes do not exist.


Capital Structure Theories – A) Net Income Approach (NI)

• As per NI approach, higher use of debt capital will result in reduction of WACC. As a consequence, value of firm will be increased.

Value of firm = <u>Earnings</u> WACC

- Earnings (EBIT) being constant and WACC is reduced, the value of a firm will always increase.
- Thus, as per NI approach, a firm will have maximum value at a point where WACC is minimum, i.e. when the firm is almost debt-financed.

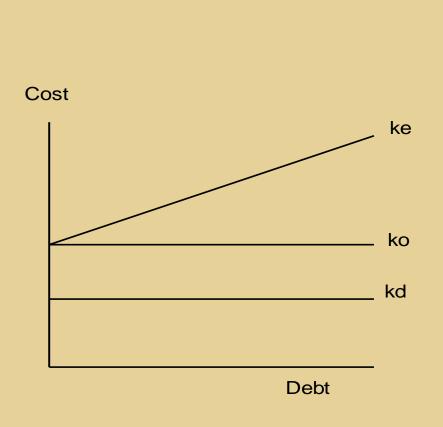
Capital Structure Theories – A) Net Income Approach (NI)

As the proportion of debt (K_d) in capital structure increases, the WACC (K_o) reduces.

Capital Structure Theories — A) Net Income Approach (NI)

Calculate the value of Firm and WACC for the following capital structures				
EBIT of a firm Rs. 200,000.	Ke = 10%	Kd = 6%		
Debt capital Rs. 500,000	Debt = Rs. 700,0	Debt = Rs. 200),000	

Particulars	case 1	case 2	case 3
EBIT	200,000	200,000	200,000
(-) Interest	30,000	42,000	12,000
EBT	170,000	158,000	188,000
Ke	10%	10%	10%
Value of Equity	1,700,000	1,580,000	1,880,000
(EBT / Ke)			
Value of Debt	500,000	700,000	200,000
Total Value of Firm	2,200,000	2,280,000	2,080,000
WACC	9.09%	8.77%	9.62%
(EBIT / Value) * 100			


Capital Structure Theories – B) Net Operating Income (NOI)

- Net Operating Income (NOI) approach is the exact opposite of the Net Income (NI) approach.
- As per NOI approach, value of a firm is not dependent upon its capital structure.
- Assumptions
 - WACC is always constant, and it depends on the business risk.
 - Value of the firm is calculated using the overall cost of capital i.e. the WACC only.
 - The cost of debt (K_d) is constant.
 - o Corporate income taxes do not exist.

Capital Structure Theories – B) Net Operating Income (NOI)

- NOI propositions (i.e. school of thought)
 - ♣ The use of higher debt component (borrowing) in the capital structure increases the risk of shareholders.
 - ↓ Increase in shareholders' risk causes the equity capitalization rate to increase, i.e. higher cost of equity (K_e)
 - ♣ A higher cost of equity (K_e) nullifies the advantages gained due to cheaper cost of debt (K_d)
 - ♣ In other words, the finance mix is irrelevant and does not affect the value of the firm.

Capital Structure Theories – B) Net Operating Income (NOI)

- Cost of capital (K_o)
 is constant.
- As the proportion of debt increases,
 (K_e) increases.
- No effect on total cost of capital (wacc)

Capital Structure Theories – B) Net Operating Income (NOI)

Calculate the value of firm and cost of equity for the following capital structure -				
EBIT = Rs. 200,000.	WACC (Ko) = 10%	Kd = 6%		
Debt = Rs. 300,000, Rs. 400,000, Rs. 500,000 (under 3 options)				

Particulars	Option I	Option II	Option III
EBIT	200,000	200,000	200,000
WACC (Ko)	10%	10%	10%
Value of the firm	2,000,000	2,000,000	2,000,000
Value of Debt @ 6 %	300,000	400,000	500,000
Value of Equity (bal. fig)	1,700,000	1,600,000	1,500,000
Interest @ 6 %	18,000	24,000	30,000
EBT (EBIT - interest)	182,000	176,000	170,000
Hence, Cost of Equity (Ke)	10.71%	11.00%	11.33%

- MM approach supports the NOI approach, i.e. the capital structure (debt-equity mix) has no effect on value of a firm.
- Further, the MM model adds a behavioural justification in favour of the NOI approach (personal leverage)
- Assumptions
 - Capital markets are perfect and investors are free to buy, sell,
 & switch between securities. Securities are infinitely divisible.
 - o Investors can borrow without restrictions at par with the firms.
 - o Investors are rational & informed of risk-return of all securities
 - No corporate income tax, and no transaction costs.
 - o 100 % dividend payout ratio, i.e. no profits retention

MM Model proposition –

- o Value of a firm is independent of the capital structure.
- o Value of firm is equal to the capitalized value of operating income (i.e. **EBIT**) by the appropriate rate (i.e. **WACC**).
- o Value of Firm = Mkt. Value of Equity + Mkt. Value of Debt
 - = <u>Expected EBIT</u>
 - Expected WACC

MM Model proposition –

- o As per MM, identical firms (except capital structure) will have the same level of earnings.
- o As per MM approach, if market values of identical firms are different, 'arbitrage process' will take place.
- o In this process, investors will switch their securities between identical firms (from levered firms to un-levered firms) and receive the same returns from both firms.

Levered Firm

- Value of levered firm = Rs. 110,000
- Equity Rs. 60,000 + Debt Rs. 50,000
- $K_d = 6 \%$, EBIT = Rs. 10,000,
- Investor holds 10 % share capital

Un-Levered Firm

- Value of un-levered firm = Rs. 100,000 (all equity)
- EBIT = Rs. 10,000 and investor holds 10 % share capital

Return from Levered Firm:

$$Investment = 10\% (110,000 - 50,000) = 10\% (60,000) = 6,000$$

$$Return = 10\% [10,000 - (6\% \times 50,000)] = 1,000 - 300 = 700$$

Alternate Strategy:

- 1. Sell shares in L: $10\% \times 60,000 = 6,000$
- 2. Borrow (personal leverage): $10\% \times 50,000 = 5,000$
- 3. Buy shares in $U: 10\% \times 100,000 = 10,000$

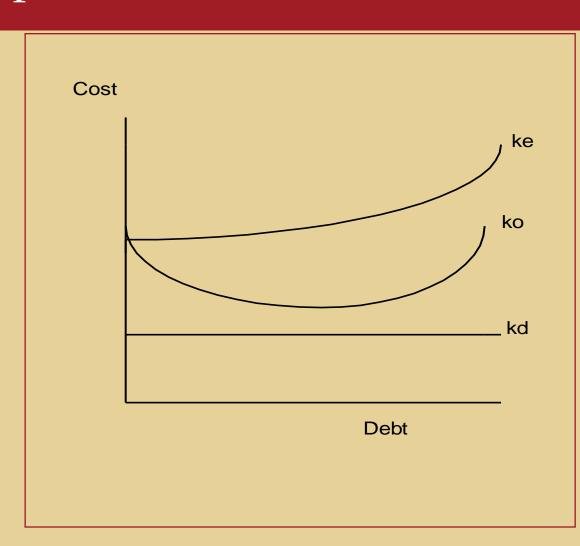
Return from Alternate Strategy:

$$Investment = 10,000$$

$$Return = 10\% \times 10,000 = 1,000$$

Less: Interest on personal borrowing =
$$6\% \times 5,000 = 300$$

Net return =
$$1,000 - 300 = 700$$


Cash available =
$$11,000 - 10,000 = 1,000$$

- The NI approach and NOI approach hold extreme views on the relationship between capital structure, cost of capital and the value of a firm.
- Traditional approach ('intermediate approach') is a compromise between these two extreme approaches.
- Traditional approach confirms the existence of an optimal capital structure; where WACC is minimum and value is the firm is maximum.
- As per this approach, a best possible mix of debt and equity will maximize the value of the firm.

The approach works in 3 stages –

- 1) Value of the firm increases with an increase in borrowings (since $K_d < K_e$). As a result, the WACC reduces gradually. This phenomenon is up to a certain point.
- 2) At the end of this phenomenon, reduction in WACC ceases and it tends to stabilize. Further increase in borrowings will not affect WACC and the value of firm will also stagnate.
- 3) Increase in debt beyond this point increases shareholders' risk (*financial risk*) and hence K_e increases. K_d also rises due to higher debt, WACC increases & value of firm decreases.

- Cost of capital (K_o) is reduces initially.
- At a point, it settles
- But after this point,
 (K_o) increases, due to increase in the cost of equity. (K_e)

EBIT = Rs. 150,000, presently 100% equity finance with Ke = 16%. Introduction of debt to the extent of Rs. 300,000 @ 10% interest rate or Rs. 500,000 @ 12%.

For case I, Ke = 17% and for case II, Ke = 20%. **Find the value of firm and the WACC**

Particulars	Presently	case I	case II
Debt component	-	300,000	500,000
Rate of interest	0%	10%	12%
EBIT	150,000	150,000	150,000
(-) Interest	-	30,000	60,000
EBT	150,000	120,000	90,000
Cost of equity (Ke)	16%	17%	20%
Value of Equity (EBT / Ke)	937,500	705,882	450,000
Total Value of Firm (Db + Eq)	937,500	1,005,882	950,000
WACC (EBIT / Value) * 100	16.00%	14.91%	15.79%